
Monitoring of Earth Orientation Variables

Jim Ray Earth Orientation Department U.S. Naval Observatory

What are Earth Orientation Parameters?

- The time-varying angles which describe the rotation and wobble of the Earth as it spins in inertial space
- EPOs provide the link between:
 - * terrestrial reference frame fixed to Earth non-inertial (rotating, etc.)
 - * celestial reference frame fixed to quasars inertial (non-rotating)
 - $\star \ \mathbf{TRF} \leftarrow \mathbf{EOPs} \rightarrow \mathbf{CRF}$
- Treated as 5 time-varying angles:
 - * **polar motion** x,y coordinates of instantaneous pole location on Earth's surface (in TRF)
 - * Universal time UT1 or, equivalently, excess length of day; angle about rotation (z) axis
 - * **nutation** position of pole in celestial frame

Why do EOPs Matter?

- Nearly all observations of space objects or from space platforms must be related to Earth points
 - \star e.g., target locations
- Could use dense, global tracking networks to continuously locate satellites in TRF by geometric triangulation from the ground
 - * generally not practical (except for geostationary satellites)
- Instead, Newton's laws of motion give accurate description of satellite dynamics using sparse observations
- But physical laws only usable (simple) in inertial (non-rotating) frame
 - ★ otherwise, must introduce complex pseudo-forces

How are EOPs Used?

- Method to analyze Earth-based observations:
 - \star apply transform: **TRF** \to (EOPs) \to **CRF**
 - \star compute orbit in inertial frame using laws of motion
 - \star transform back: CRF \rightarrow (EOPs) \rightarrow TRF
- Simple rotation matrix relation used:

$$\mathbf{CRF} = \mathbf{P} * \mathbf{N}(t) * \mathbf{R}(t) * \mathbf{W}(t) * \mathbf{TRF}$$

where

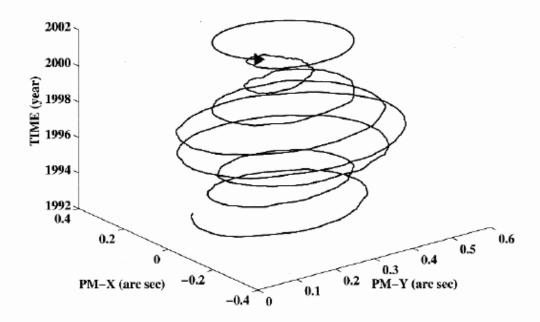
CRF = celestial (x,y,z) coordinates

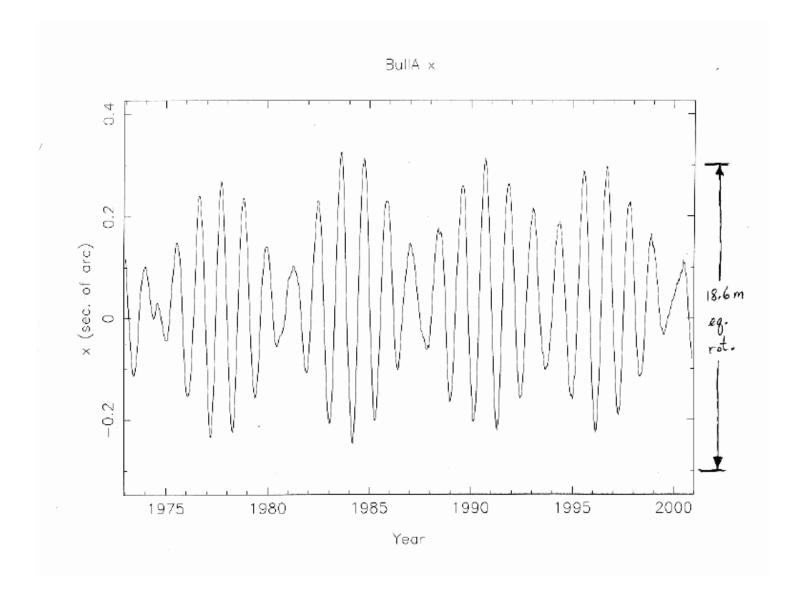
TRF = terrestrial (x,y,z) coordinates

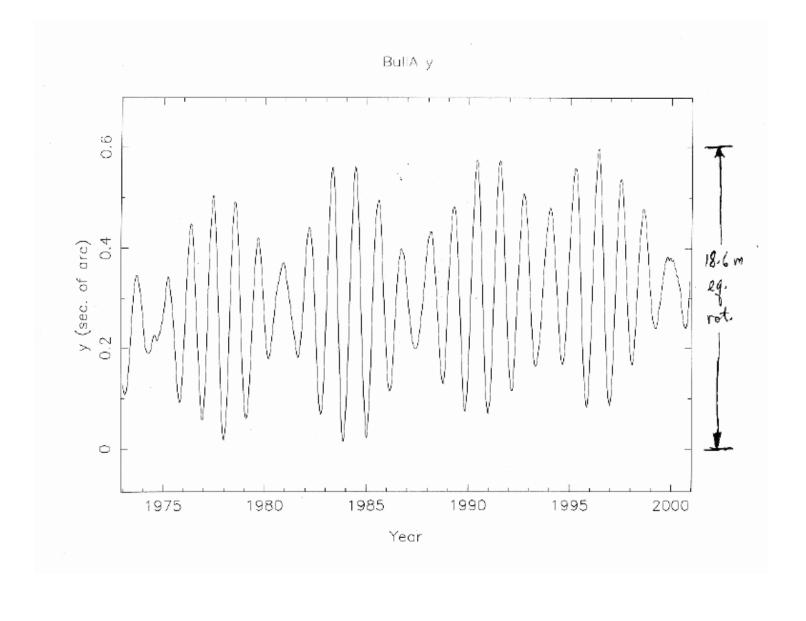
P = precession matrix

N(t) = nutation matrix

 $\mathbf{R}(t) = \text{rotation (UT1) matrix}$

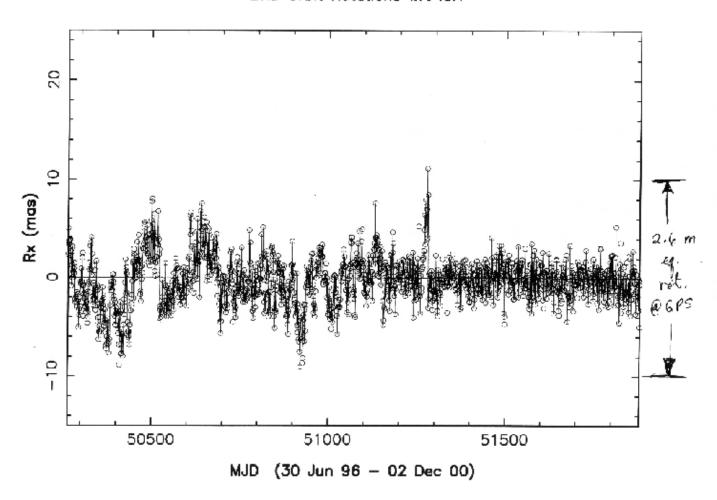

W(t) = wobble (polar motion) matrix

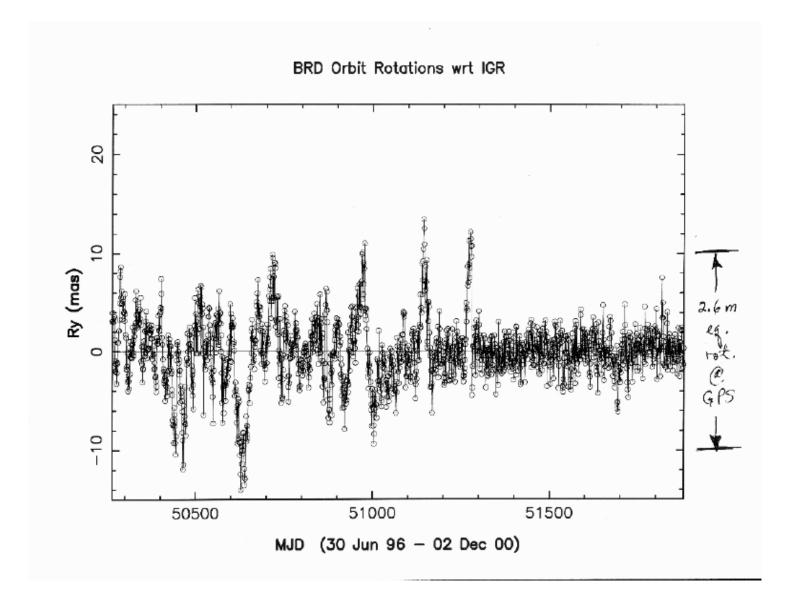

and the terms N(t), R(t), and W(t) are EOPs.


How Big are EOP Variations?

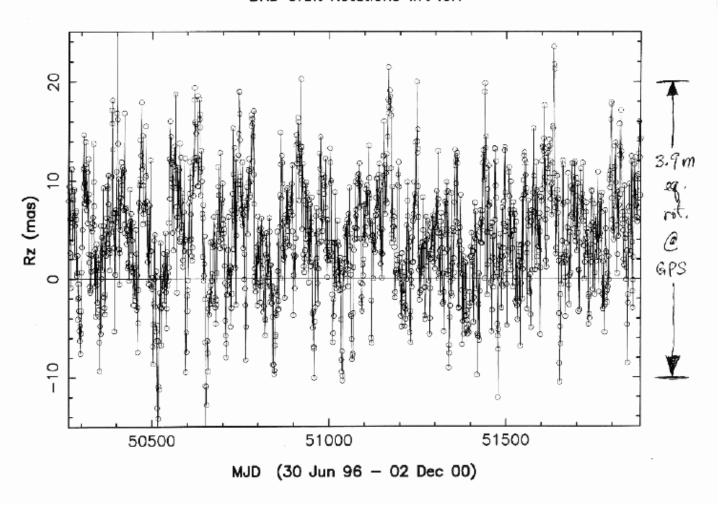
- variations on all time scales, from hours upward
 - ★ generally, larger changes over longer time scales
- Polar motion changes
 - ★ large annual periods (modulated)
 - \star ±600 mas range
 - \rightarrow nearly 20 meters of equatorial motion
- Length of Day changes
 - ★ large annual periods (plus known tides)
 - \star ±1 millisecond (ms) range for length of day over a year
 - \rightarrow nearly 0.5 meter of equatorial motion
- UT1 changes
 - \star integral of length of day changes
 - \star small errors in length of day can accumulate to very large UT1 errors

POLAR MOTION FROM 1992 TO 2002





What is the Effect of EOP Errors?


- Method to generate orbit predictions (for real-time use, e.g., broadcast GPS orbits):
 - * transform past tracking data (collected in TRF): $\mathbf{TRF} \to (\mathrm{EOPs}) \to \mathbf{CRF}$
 - * compute orbit for observed period (in inertial frame)
 - * use laws of motion to **predict future orbit** (in inertial frame)
 - * transform back to TRF: $\mathbf{CRF} \to (\mathbf{predicted} \ \mathbf{EOPs}) \to \mathbf{TRF}$
- EOP prediction errors contribute directly to orbit rotation errors
- 1 milliarcsecond (mas) = 13 cm equatorial rotation @ GPS altitude
- GPS orbits show rotations up to ± 20 mas
 - * equivalent to 2.6 meters equatorial variation

BRD Orbit Rotations wrt IGR

BRD Orbit Rotations wrt IGR

What Causes EOP Variations?

- Nutation motion of celestial pole in CRF
 - * due to gravitational forces of Sun, Moon, and planets acting on non-spherical Earth
 - * accurately predicted by models
 - * prediction error <0.3 mas (<4cm @ GPS altitude)
- Polar motion motion of pole in TRF
 - \star due to exchange of angular momentum:

 $\mathbf{Earth's} \ \mathbf{crust} \leftrightarrow \mathbf{atmosphere} \leftrightarrow \mathbf{oceans}$

- ★ crudely predictable
- * prediction error ~0.4 mas/day (~5 cm/day @ GPS altitude)
- UT1 rotation rate
 - \star due to exchange of angular momentum: Earth's crust \leftrightarrow atmosphere \leftrightarrow core
 - \star very poorly predictable
 - \star prediction error ~ 0.1 ms/day = ~ 1.5 mas/day (~ 20 cm/day @ GPS altitude)

How are EOP Variations Measured?

- Very long baseline interferometry (**VLBI**) applied to multi-station radio astronomy of quasars
 - \star measure all 5 EOP angles
 - ★ weekly EOPs (5 times per week UT1)
 - * very expensive
 - ★ multi-agency, multi-national effort
 - ★ International VLBI Service (IVS)
- Satellite laser ranging (SLR) round-trip timing of laser pulses to satellites
 - * measures polar motion and length of day
 - \star daily to few-day EOPs
 - ⋆ very expensive
 - * multi-agency, multi-national effort
 - * International Laser Ranging Service (ILRS)
- Global Positioning System (GPS) radiometric timing using global tracking network
 - * measures polar motion and length of day
 - * daily EOPs; most accurate polar motion
 - ★ inexpensive network and analysis
 - * International GPS Service (IGS)

Where to Get Latest EOPs?

- International Earth Rotation Service (IERS)
 - * exists to provide EOP service to user community
 - ★ ensures consistent, high-accuracy results
 - \star USNO serves as Rapid Service & Prediction Center
- IERS Bulletin A (Rapid Service & Predictions)
 - \star prepared at USNO
 - \star publication of recent past EOPs
 - \star plus predictions up to 1 year in future
 - * based on multi-technique combination (VLBI, SLR, GPS)
- Access EOP products at
 - $\star \ http://maia.usno.navy.mil/$
 - \star web/ftp protocols
 - \star also, e-mail subscriptions available